第十八章 魔法师与徒弟:自然科学流派(1 / 2)

你认为,今天世上还有一块可供哲学容身之地吗?

当然。可是,却只能建立在目前科学的知识与成就之上……哲学家们再也不能把自己隔绝起来,与科学不相往来了。科学,不但已经大大地扩大并改变我们对生命和宇宙的观念,对于知识分子的思维方式,也起了革命性的变化。

——列维·施特劳斯(Claude Lévi-Strauss,1988)

气体动力学(gas dynamics)中的标准内容,是该作者担任古根海姆奖金研究员(Guggenheim Fellowship)时完成的。它的形式,根据作者自己所言,是受到行业的需要左右。在这样一个架构里,针对爱因斯坦的广义相对论予以证实,随之被视为一项重要步骤,因为它可以促成“通过对细微地心引力影响的考虑,造成弹道精确度”的改进。战后物理学的发展,愈来愈集中于这类具有军事应用的领域。

——雅各布(Margarev Jacob,1993,pp.66—67)

<h3>1</h3>

自然科学在20世纪无孔不入,20世纪也对自然科学依赖日深,这两方面都史无前例。但是,自伽利略(Galileo)被迫放弃自己对天文的学说以来,还没有一个时代像20世纪这般,对自然科学感到如此不自在。这种二律背反的现象,正是20世纪史学家必须处理的一大课题。不过在作者冒昧一试之前,对于这个矛盾现象,有几个方面得先交代清楚。

回到1910年,英德两国的物理学家、化学家人数,全部加起来约有8000人。到80年代末期,全世界实际从事研究实验的科学家及工程师们,据估计在500万名左右。其中有100万人,是在科学头号大国的美国;比此稍高一点的人数,则在欧洲。[1]

虽说科学家的总数,仍只占人口的极少数——即使发达国家亦然——可是他们的人数,却在继续惊人地增加,在1970年后的20年间,几乎呈倍增之势,连最先进的国家也不例外。事实上到80年代末期,科学家人口只是一座更大冰山的小尖顶而已。这座冰山,是一股庞大的潜在科技人力,反映出20世纪下半期教育革命的成果(参见第十章),代表着全球总人口的2%,及北美人口的5%(UNESCO,1991,Table5.1)。而真正的科学家,越来越通过高级“博士论文”的方式选拔,博士学位便成为进入科学这门行业的必备门票。以80年代为例,任选哪一个西方先进国家,平均每年每百万人口中,便产生出134名的自然科学博士(Observatoire,1991)。这一类的国家,也在科学上花了天文数字的投资,而且其款项多来自公共资金——甚至连最典型的资本主义国家也不例外。事实上,某些最昂贵的所谓“大科学”,除了美国,还没有其他任何一国单独玩得起呢(到了90年代,连美国也供不起了)。

但是其中却有一个崭新现象。虽然约九成的科学论文(论文数则每十年倍增一次),都以4种文字面世(英、俄、法、德),事实上以欧洲为中心的科学发展,却在20世纪宣告终了。大灾难的时期,尤其是法西斯主义暂时得逞的那个年头,已经将科学的重心移向美国,并且从此就由美国长执牛耳。1900—1933年间,美国科学家得诺贝尔奖者只有7人,但到1933—1970年间,却暴增为77人。其他由欧洲移民组成的国家,例如加拿大、澳大利亚,以及实力经常被人低估的阿根廷,[2] 也成了境外中心、独立的研究重镇。不过其中也有一些国家,例如新西兰和南非,却基于国小或政治之由,重要科学家们纷纷出走外流。与此同时,非欧洲系科学家也迅速崛起,尤以东亚及印度次大陆为首,且增长情况惊人。第二次世界大战结束以前,遍数亚洲地区,只有一人得过一次诺贝尔科学奖的荣衔——印度的物理学家拉曼(C.Raman)于1930年获物理学奖。但自1946年以来,却已有10位以上得主的大名,是来自日本、中国、印度、巴基斯坦等地区。当然,光看诺贝尔奖记录不足为凭,明显有低估亚洲的科学振兴之嫌;正如单凭1933年前的得奖名单,也有小觑当时美国的科学进展之虞。不过值此世纪末时,世界上的确也有部分地区,论其科学家的人数,不但实际数字偏低,相对比例更低,比如非洲和拉丁美洲。

但是惊人的是,亚洲裔桂冠得主之中,至少有三分之一是在美国名下得奖,而非以本籍获此荣衔(事实上在美国得主里,身为第一代移民者竟有27名之多)。因为在这个日益国际化的世界里,自然科学家讲的是同一种国际语言,采取的是同一种研究方法,却出现一种怪异现象,那就是反使他们大多集中于一两处拥有合适设备资源的研究中心,即少数几个高度发达的富国之内,其中尤以美国为最。当年的大灾难时期,世上的天才智囊为了政治理由纷纷从欧洲出逃;但是1945年以来,主要却是为了经济原因由贫国改投富国。[3] 这一趋势并不足为奇,且看自70年代和80年代以来,发达资本主义国家的科研支出,竟占全球总科研开支的四分之三即知。贫穷国家(发展中国家)则少得可怜,甚至不及2%—3%(UN World Social Situation,1989,p.103)。

但是即使在发达国家里,科学家的分布也渐渐失去分散性,一方面因为人口及资源集中(为了效率之故),另一方面则由于高等教育的巨大增长之下,无形地在教育机构中形成了一个等级,或所谓寡头阶级。50年代和60年代时,美国半数的博士,是出自15家最负盛名的大学研究院,因此愈发吸引了最出色的年轻科学家趋之若鹜。在一个民主的民粹世界里,科学家却成为社会上的精英阶级,集中在数目极少、资助很多的几处研究圣地。作为“科学族”,他们以群体的姿态出现,因为对他们从事的活动而言,沟通交流(“有人可以共谈”),是最重要的中心条件。于是随着时间过去,他们的活动对非科学家的外人来说,越发如谜,奥不可解——虽然作为门外汉的一般凡人,借着大众化的介绍文字(有时由最优秀的科学家本人执笔),拼命地想去听懂。事实上随着各门科学的日益专深,甚至连科学家之间,都得靠学刊之助,才能向彼此解释自己本行之外的发展动态。

20世纪对科学依赖程度至深,自是毋庸多言。在此之前,所谓“高级/精深”科学,即那种不能从日常经验取得,非多年训练无法从事——甚至无法了解——最终以研究进修为最高顶点的知识学问,与今日相比,实际应用范围极狭窄,直至19世纪末时才开始改观。17世纪时的物理学和数学,主宰着工程师们;到维多利亚女王时代中期,18世纪末期及19世纪初期在化学和电气方面的发现,已成为工业及传播不可或缺之物。专业科学研究人员的研究探索,也被认为是必要的前锋,甚至可带来科技上的进步。简单地说,以科学为基础的科技,早已是19世纪资产阶级世界的核心;虽然一般实际之人,并不晓得该把这些科学理论成就如何应用是好。唯一用途,只能在恰当时候派上用场,转为意识形态发挥:例如牛顿定理之于18世纪,以及达尔文学说之于19世纪末期。可是除此之外,人类生活的绝大多数方面,继续为生活经验、实验、技能,以及训练过的常识所主导,充其量,也只能将人生累积的现有最佳方法技巧,有系统地传播而已。其中包括农业、建筑、医药,以及其他各种供应人生需要及享受的多项人类活动。

但是到了19世纪最后三分之一时,情况发生了改变。进入“帝国的年代”,不但现代高科技的雏形开始出现——单举汽车、航空、无线电广播、电影等为例足矣——现代科学理论的轮廓也于此时成形,如相对论、量子论(the quantum)、遗传学(genetics)等等。更有甚者,连最奥秘、最具革命性的科学发现,如今也被视为可以有立即实际应用的潜能:从无线电报到X线的医学用途,都是深奥理论应用在实际技术上的实例,两者都是19世纪90年代的发现。不过,尽管“短20世纪”的高等科学面貌,在1914年之前即已可见;尽管新世纪的高等技术,也已潜藏在高等科学之中,但是就当时来说,后者毕竟仍不是一件时时处处不可缺少,没有它难以想象每日如何生活行动之物。

然而,这却正是时至今日,当两千年正近尾声之际的现象。我们在第九章中已经看见,建立于高级科学理论研究之上的应用技术,垄断了20世纪下半期经济的兴旺繁荣,而且此景不限于发达世界。若没有已达目前农艺之境的遗传科学,印度和印尼两国,便不可能生产出足够的粮食,喂饱它们爆炸般增长的人口。到20世纪结束时,生物科技已成为农业和医药领域极为重要的一环。这一类先进科技的应用,给人印象最深之处,即在其根据的理论及发现本身,根本远在一般人的日常生活范畴之外(包括最先进最发达国家在内),所以事实上全世界只有极少数人——也许几十位,至多数百名——从刚一开始,就能领悟到它们可以应用在实际用途之上。当年德国物理学家哈恩(Otto Hahn),在1939年初发现核裂变时,甚至连某些物理界最活跃的成员,例如伟大的玻尔(Niels Bohr,1885—1962),也怀疑这项发现能否在和平或战争上找到实际用途;至于眼前直接的应用,自然更是存疑。如果当初深谙其潜在用途的物理学家们,不曾把这项发现告诉将军和政治家,这类武夫和政客铁定永远懵然不知——除非后者本身也是高级物理学家,不过此事极不可能。再以图灵(Alan Turing)1935年那篇为现代计算机理论奠定基石的著名论文为例,本来也只是数理逻辑学家(logician)纯理论性的初探而已。战争爆发,给了他及其他科学家试将理论应用于实际的机会,主要是为破译密码。然而当图灵论文初发表时,除了少数几名数学家外,连有兴趣一读之人都没有,更别说予以重视。甚至在他自己的同事眼中,这名外貌粗拙、脸色苍白的天才,当时不过是一名嗜好慢跑的后进新人,根本不是什么举足轻重的大人物——至少在作者记忆里的他,绝非如此(可是他谢世以后,在同性恋者圈中却广受膜拜,颇有一代圣者之势)。[4] 事实上,甚至当科学家的确在尝试解决众所周知的重大问题时,也只有极少数的聪明人,在与世极为隔绝的知识圈中,清楚知道这中间到底是怎么一回事。记得当年作者在剑桥从事研究时,克里克(Crick)和沃森(Watson)二位学者,也正在该处进行其著名的脱氧核糖核酸(DNA)——“双螺旋”(the Double-Helix)结构研究。研究结果一经发表,他们的成就立即被公认为20世纪最具决定性的突破。虽然我甚至记得,当时曾与克里克在应酬场合碰面,可是我们当中的多数人,却懵然不知就在离我们学院大门不过数十码处,那个我们每天走来走去经过的实验室里,以及我们每日闲坐喝酒的小酒吧中,正酝酿着一项非凡的发明。我们的不知情,倒也不是由于对这些事情没有兴趣,而是从事这类高深活动之人,找不出任何理由相告。因为对于他们的工作,我们既不可能有任何贡献;对于他们遇到的难题,恐怕更连听都听不懂吧。

然而,不论科学发明多么艰深难懂,一旦发明出来,便立即转向实际科技用途。因此,晶体管是1948年固体物理研究(即稍有瑕疵的结晶的电磁性质)产生的副产品(8年之内,发明者便荣获诺贝尔奖);正如1960年发明的激光,也非来自光学研究,却是研究电场中分子共振的附带结果(Bernal,1967,p.563),激光的发明人,也很快得到诺贝尔奖。而剑桥和苏联物理学家卡皮察(Peter Kapitsa,1978),也由于低温超导的研究获此殊荣。1939—1946年间战时的研究经验证实——起码对盎格鲁—撒克逊裔而言——只要将人力物力资源大力集中,再困难的科技难题,也可以在几乎不可能的短时间内解决。[5] 于是更加鼓励了不计成本,只要于战争有利,或于国家名誉有益的各种先锋性科技研究(如太空计划)。因此,越发加快了实验室科学转为实用技术的速度,其中某些项目,在日常生活中更是用途广泛。激光,就是实验科学快速摇身一变,成为实用技术的最佳例证。1960年首次于实验室中出现,到80年代末期,已经以激光唱盘(compact disc)的形态推广到消费者手中。生物科技的脚步更快。脱氧核糖核酸再制的技术(DNA recombinant)——就是将一种生物基因,与另一种生物基因组合合并的技术——其实际用途的应用性,1973年首次获得认可。不到20年的光阴,生物科学已经是医学和农业研究上主要的投资项目了。

更有甚者,全息理论及其应用的爆炸性增长,使科学新发现如今更以越来越短的时差,转变为种种终端使用者根本不需知其所以然的实用科技。最理想的成果,就是一组连傻瓜也会按的键钮,只要按对了地方,就可以触发一连串自我行动、自我校正,甚至能够自我决策的程序,并且不再需要一般人有限且不可靠的智慧及技术,再予以任何指令。其实更理想的情况是,这一组程序可以事先以程序全盘设定,完全不用人插手,只要在出错之时更正即可。90年代超级市场的结账台,就是去除人为行动的最佳例证。收款员只要会认钱,知道什么是元角分,什么是一元十元,再把顾客递来的钱数,打进收款机即成。自动扫描机则将商品上的条码转成价钱,全部计算好,再从客人所付的金额减去,然后便告诉收银员该找多少零钱回去。这一连串程序背后的实际操作,其实极为复杂,要靠一组非常精密详尽的软硬件设备才能进行。但是除非出了什么差错,这一类20世纪末期的科技奇迹,往往只需收款员认得基本数字,具有最低限度的注意力集中时间,以及耐得住无聊就可以了。不需要识字,更不用有学问。对收款员来说,这中间到底怎么回事,机器怎么知道客人该付多少,自己又该找多少,根本无关紧要,虽不懂也不必懂。他们的操作条件,并不需要知道其背后的所以然。魔法师的徒弟,再也不用担心自己的学问不够了。

就实际目的而言,超级市场的结账台,的确代表着20世纪末期人世的常态。先进前卫的科学技术奇迹,不需要我们有任何认识,也不需我们进行任何修改——就算我们真的了解,或自以为了解——就可以轻松使用。因为别人会替我们,甚至已经替我们想好做好了。更有甚者,即使我们本身是这一行或那一行的专家,即也能够设计、制造,或如果东西出了毛病,知道如何修理——面对着每天日常生活中所有其他科学技术结晶的产品,也不得不屈就门外汉的身份。而且,即使我们真的了解,深悉其中的奥妙原委,事实上这份知识也无必要,与我们实际的操作使用毫无关系。就好像扑克牌到底如何制造,对一名(诚实的)玩牌者而言,又有何意义可言?传真机的设计(为什么洛杉矶塞进一张纸头,伦敦就如样复制吐出一张),乃是为了那些对其中道理毫无概念者所制造。同样的传真机,换由电机系教授使用,也不会因此便产生更佳的效果。

因此,通过紧密联系人类生活行动的实用技术,科学每天都向20世纪的世界展示着它的神奇功力。不但不可或缺,而且无所不在——就像安拉之于虔诚的穆斯林一般——甚至连最偏远的人类社会,也知道晶体管收音机和电子计算机之为何物。人类这股可以产生超人奇效的能耐,究竟于何时成为共有的普遍意识,说法虽然纷纭,尤其在“发达”工业社会的都市里,确定时日更不可考,不过一般来说,肯定从1945年第一颗原子弹爆炸之后即已存在。无论如何,20世纪,是一个科学改变了世界以及人类对世界的认识的时代,这是毋庸置疑的事实。

依此推论,20世纪的意识形态,应该沐浴在科学的胜利光辉中发扬光大,正如19世纪的现世意识一般,因为这是人类意志的伟大成就。同理,传统宗教思想对科学的抗拒,19世纪对科学产生的重大疑虑,至此也应该更加削弱才是。因为宗教的影响力,不但在20世纪多数时期日渐衰微(我们在后面将会有所讨论),即使连宗教本身,例如发达世界中其他任何人类活动一样,也开始倚重奠定于高等科学的现代技术。遇上紧要关头,一名20世纪初年的天主教神父、伊斯兰教经师,或任何宗教的智者,都大可根据15世纪的方式,进行他们的宗教活动,宛如伽利略、牛顿、法拉第(Faraday)、拉瓦锡(Antoine Laureat Lavoisier)等人从来不曾存在似的。事实上,这一类19世纪的科学技术,对于他们的宗教活动并无大碍,与其神学或经典内容也没有不甚相容之处。可是时至一个梵蒂冈不得不通过通信卫星举行圣餐仪式,16世纪以来一直保存在意大利都灵(Turin)教堂,被罗马教会宣称为耶稣受难后的裹尸巾,也可以用辐射碳(radio-carbon)鉴定年代以辨真假的今天,就很难令人忽略其中的矛盾之处了。霍梅尼流亡在外,向伊朗民众传播他的谈话,使用的媒介是盒式录音机;而决定献身于《古兰经》训诲的国家,同时也全力进行本身的核武装。当代最精密复杂的科学,通过经由它们产生的实用技术,被人类在“事实上”(de facto)全盘接受。在20世纪末的今日纽约,高科技电子产品和摄影器材的销售,竟多成为哈西德教派中人的专业——哈西德是美国东部地区一支弥赛亚的犹太宗派,除了仪礼严格并坚持穿某种18世纪波兰服装之外,还以对知识追求具有狂热爱好闻名。就某种形式而言,所谓“科学”一词的优越性,甚至以正式的姿态为今天的宗教所接受并承认。美国的新教激进主义者,即驳斥进化论不符合《圣经》的教训(即宇宙今日的面貌,是6日之内的创造所成),要求学校以他们所称的“创世论科学”(creation science)取代达尔文学说,至少也应该两说并陈。

但是尽管如此,人们在20世纪与其最大成就和最大依靠之间,却感到局促不安。自然科学的进步,是在充满着疑惧的背影之下进行,偶尔甚或燃起仇恨,排斥理性及其一切产品。在科学与反科学之间的不明地域,在永恒的寻求真理之中,在充满着幻想预言者的世界里,一种新文学类型(主要是20世纪,尤其是20世纪下半期,大多由盎格鲁——撒克逊裔所特有)因而产生,即“科幻小说”。这一新的类型,于19世纪正进尾声时,由凡尔纳(Jules Verne,1828—1905)最先提出,并由韦尔斯(H.G.Wells,1866—1946)首发其初。虽然在科幻作品最幼稚的表现里,例如电影、电视上常见的“太空西部片”,宇宙飞船是驰过太空的马匹,死光枪是其六发式的左轮枪,充其量不过是借用高科技的新玩意儿,延续其冒险幻想片的旧风而已;可是在20世纪下半期一些比较严肃的科幻作品中,却可见其偏向幽暗沉郁,至少对人类现状与未来不敢肯定的模糊观点。

人们对科学的疑惧,主要基于四种感觉而生:科学的奥妙深不可解;科学的实用及后果晦不可测,甚至有灾祸可能;科学越发强调了个人的无助,并有损及权威之虞。我们更不可忽略那第四种心情,即就其对自然秩序造成的某种干扰程度而言,科学天生便具有危险性质。前两种想法,为科学家及一般人所共有;后两种感情,多为外行人所独具。作为门外汉的个人,面对这种无助感觉,只有去寻找那些“科学无法解释”的事物帮助,也即循哈姆雷特(Hamlet)所云,“天地之间,有许许多多事物……远超过你的大道理所能想象”。他们的解脱之道,就是拒绝相信这些事物可以用“正式科学”解释;并饥渴地信仰那幽不可解的迷雾——“正因为”这些谜团看来不合情理,极端荒唐。至少,到这个未知并且不可知的世界里,人人平等,大家都一样无能为力。科学的胜利愈明显,寻求不可解的饥渴愈浓。第二次世界大战以原子弹告终,战后不久,美国民众(1947年)就开始沉迷于看见大批“不明飞行物”(UFO)出现(美国佬这股新风气,不久就为一向是他们文化跟屁虫的英国人所跟从),显然是受到科幻小说的想象激发。他们坚信,这些不明飞行物,肯定是由外太空文明来的访客;其文明不但与我们不同,而且更比我们优异。其中最狂热的“目击者”,甚至口口声声宣称,亲眼见形状怪异的外来客,从这些“飞碟”之中现身;有的还表示被它们招待上船兜风呢。这种现象,成为世界性的奇观,不过若打开这些天外来客的分布图一看,就可发现来客们特别偏爱盎格鲁—撒克逊族,老喜欢在他们的地域上空降落或打转。此外,若有谁对“不明飞行物”现象提出任何疑问,就被这批UFO迷斥之为科学家的小心眼儿,因为他们不能对此现象提出解释,因而产生的嫉妒心理作祟。甚至还有阴谋论一说,认为某些人故意将高级智慧隐瞒起来,好让一般人永处“不可使知之”的无知之中。

这些想法,却与传统社会对魔术和奇迹的信仰不同,也与人类自古以来即对神明灵怪永远充满好奇的心情有异。在传统的社会里,现实中发生的奇物异事,往往是不可完全控制的人生中当然的一部分——事实上,看到一架飞机,或拿起话筒讲话这类经验,远比自然中的奇异现象令传统人惊异多了。而自印刷术发明以来,从单面木刻的传奇故事开始,一直到今天美国超级市场收款处摆卖的通俗杂志,更充斥着种种古灵精怪的诡异报道。今天人们的反应,都不属以上感情,却是对科学主张及统治的一种反抗,有时甚至是有意识的抗拒心理。例如自从科学家证实了氟可以有效降低现代都市人的蛀牙之后,一些边缘团体(又以美国为风气中心),便起来强烈反对在饮用水中加氟的做法。反对的理由,不但是基于每一个人都应该有选择是否要降低蛀牙的自由,而且更把加氟视为卑鄙的阴谋(这是最极端的看法),是有心人想借这种强制下毒的手段,戕害一般大众的身体。库勒里克(Stanley Kubrick)导演的《奇爱博士》(<i>Dr.Strangelove</i> ,1963)一片,即对这类意识有极为生动的描写,将人类对科学的怀疑以及对其后果的恐惧,完全表露无遗。

随着生活日益为现代科技——包括其中的医学技术——及与之同来的风险所吞没,北美文化的孱弱体质,也有助于这类疑惧心理的散布。美国人好诉讼,喜欢上法庭解决人生一切问题的这种奇怪癖性,更让我们看清他们心中存有的恐惧(Huber,1990,pp.97—118)。岂不见杀精型避孕药(spermicides)导致畸形胎儿吗?岂不见高压电线对附近居民的健康有害吗?专家有专家的判断标准,平常人则有他们的希望和恐惧,两者之间的鸿沟,更由于双方在意见上的差距而愈深。在专家只顾“一万”的冷静分析里面,可能认为利害相权之下,为了更大的利益,值得付出少量风险。但是对只怕“万一”的个人来说,自然只希望风险为零(至少在理论上如此)。[6]

事实上,这种恐惧感正是只知道自己生活在科学掌管之下的平凡男女,对未知的科学威胁所持有的害怕心理。而其恐惧的强度与焦点,则依观点不同,以及对现代社会怀有的畏惧而有异(Fischhof et al.,pp.127—152)。[7]

然而,在20世纪的前半叶,对科学造成最大戕害的来源,却非上述这些在科学不可控制的无穷威力下,卑躬屈膝的平凡众生,而是那些自以为可以控制科学的人。综观世上,一共只有过两家政权(除了日后向激进主义回归的政权为特例之外)乃是基于“主义”主动干涉科学研究,两者都致力于技术上的无限进步。其中一家,甚至致力于一种与“科学”视为一体的意识形态,并对理性及实验的征服世界,发出欢声庆祝。但是斯大林作风与德国纳粹主义,都是为了实际技术的目的才采纳科学;而科学之为物,却是向一切以先验性真理形式存在的世界观及价值观提出挑战。因此在实际上,这两家政权都拒斥科学,不能接受它向既有事物挑战的姿态。

因此,两家政权都对“后爱因斯坦”的物理学大感不安。纳粹斥其为“犹太”邪说,苏联思想理论家则将其归之于不够“唯物”(materialists)——这个字眼,在此是根据列宁的定义而论——不过在实际上,双方却对此容忍,因为作为一个现代国家,绝对少不了标准的“后爱因斯坦”物理学家。不过纳粹主义却将犹太人和各种反对派扫地出门,不但使它自己尽失欧洲的物理天才,同时也等于一举毁灭了20世纪初期德国科学原有的优越地位。1900—1933年间,66个诺贝尔物理和化学奖中,有25个落在德国;但是1933年以来,德国得奖率却不及十分之一。德苏两政权与生物科学也不搭调。纳粹德国的种族主义政治,吓坏了严肃的遗传学家,第一次世界大战后纷纷与其保持距离,不愿与任何培选人类基因的政策搭上关系,主要是被种族主义者对优生学的狂热激情所吓阻(这项政策,还包括消灭在优胜劣汰法则之下的“不适者”)。不过悲哀的是,我们得承认,当时在德国生物学和医学界中,确也有许多人相当支持纳粹的种族主义政策(Proctor,1988)。至于斯大林治下的苏联政权,则基于意识形态理由,与遗传学格格不入。因为其国家政策所致力的原则主张,只要付出足够努力,“任何”改变均可达到。可是科学却不以为然,指出不论就总体的进化而言,或特定的农业而论,这都是不可能的结果。至于在其他情况之下,两大派进化论生物学家之间的争议,则得靠讨论会和实验室才能解决——一派追随达尔文,认为遗传特质由天生基因决定;另一派则师法拉马克(Lamarck),主张遗传物质是后天产生,在生物一生中获得并演化完成——事实上,在大多数科学家的眼中,此事已经尘埃落定,胜方属达尔文派。不论别的,单就找不到自后天取得遗传物质的满意证据,就可以决定答案了。但是在斯大林的治下,一位偏激的非主流生物学家李森科(Trofim Denisovich Lysenko,1898—1976),曾以拉马克式的主张,赢得政治当局的支持。他认为若根据拉马克的程序,缩短一般旧式生产和饲养过程,农业生产将可大增。在当时那种时候,与当局唱反调自然是极为不智之举;苏联最负盛名的遗传学家、院士瓦维洛夫(Nikolai Ivanovich Vavilov,1885—1943),就因为不同意李森科的谬论(其他的苏联正派遗传学家也对李森科不以为然),病死劳改营中。不过苏联生物学致力驳斥遗传学说,根据外面世界的了解,是第二次世界大战后才成为全体遵行的官方立场,并至少一直延续到斯大林死后才告终止。像这一类无理性的政策,对苏联科学戕害之大,自然后患无穷。

德国纳粹与苏联两大政权,虽然在许多方面截然不同,却有一种共同信仰,认为它的公民都赞同一个“真正的信条”,只不过这个信条不是天定神谕,而是由世俗的政治——意识形态权威裁定。因此,众多社会民众对科学同有的不安感觉,在此终于找到正式的官方口径——这里不像其他国家,后者在19世纪漫长的时期中,都已学得一门功课,就是民众的个人信念茫不可知。事实上正统宗教式世俗政权的崛起,正如我们在前所见(参见第四和第十三章),原是大灾难时期的副产品,寿命并不久长。无论如何,硬要把科学塞进意识形态的紧身衣内,根本就有违效果,如果还真的认真去实行,其结果可想而知(例如苏联乱搞其生物科技的做法)。就算放手让科学自由,却坚持意识形态至上,其现象也可笑至极(例如德苏的物理学界)。[8] 进入20世纪后期,官方再度对科学理论施加条件的作风,则由以宗教激进主义为基础的政权接手。但是这些人与科学之间格格不入的不安感觉,却一直持续着,更何况科学本身一日千里,越来越不可思议和不可确定。不过要到20世纪下半叶,这种心理才转由基于对科学实际效应的恐惧所促成。

诚然,科学家自己比谁都清楚,也比谁都早知道,他们的发现可能带来不可预测的后果。自从第一颗原子弹实际使用以来,某些科学家便向他们的政府首脑提出警告,要当心世界现在有了这个毁灭性的力量可供驱使。但是在科学与潜在灾祸之间画上等号,却是20世纪下半叶才发展出的概念。其第一阶段——核战争的噩梦——属于1945年后超级大国对抗的时期。第二阶段,则属于70年代揭幕的危机时期,范围更为广泛。但是回到大灾难的时期,也许是由于世界经济增长的严重减速,人类还心安理得,大做其人定胜天的科学美梦。至少,如果最糟糕的情况真的发生了,人们也以为自然之力无穷,自有办法重新调整,适应人类闯下的祸事。[9] 而另一方面,当时唯一令科学家辗转难安之事,只是他们不知道自己的理论到底代表着什么意义。

<h3>2</h3>

“帝国的年代”中的某一时期,科学家们的发现发明,与基于感官经验(或想象)的“现实”之间的那个环节,忽然断裂。而在科学与基于常识(或想象)的“逻辑”之间的环节,此时也同时断落。两项断裂,彼此强化,因为自然科学的进步,越来越倚重用纸笔写数学公式之人,而不靠实验室内诸公。20世纪,于是成为理论家指导工程师的世界,前者告诉后者应该找些什么,并且应该以其理论之名寻找。换句话说,这将是一个数学家的世界——不过根据作者得自权威的指点,只有分子生物学,由于其理论依然很少是例外。并非观察与实验降为次要,相反地,20世纪科技的仪器、技术,比起7世纪以来任何一个时期的改变都更巨大,其中有几项甚至因此获得科学界的最高荣誉——诺贝尔奖。[10] 即以一事为例,电子显微镜(electron microscope,1937)和射电望远镜(radio telescope,1957)的发明,便突破了历来光学显微镜放大的限制,使得人类可以更深入地近观分子甚至原子世界,远眺遥远宇宙苍穹。近几十年来,在计算机的协助之下,种种程序过程的自动化,以及愈加复杂的实验活动与计算,更使实验人员、观察人员,以及负责建立模型(model)的理论人员更上一层楼。在某些领域,例如天文学,仪器的进步更造成重大发现——有时却属无心栽柳的意外结果——并由此更进一步推动理论的创新。基本上,现代天体学(cosmology)便是由以下两大发现所促成:一是哈勃(Hubble)根据银河系光谱(spectra of galaxies,1929)分析所做的观察结论——宇宙在不断扩张之中;一是彭齐亚斯(Arno A.Penzias)与威尔逊(Wilson)于1965年发现了天体背影辐射(cosmic background radiation)——电波杂音(radionoise)。但是,对“短20世纪”的科学研究而言,虽然理论与实务依旧并重,指挥全局者却已是理论大家。

对于科学家本身来说,与感官经验及常识告别,不啻意味着从此与本行经验原有的确定感,以及过去惯用的方法分道扬镳。这种现象的后果,可由20世纪前半期众科学之后的极为重要的学科——物理学——的演变一见分晓。诚然,物理学的关心焦点,仍旧是小到(不论死活)一切物质的最小成分,大到物质最大组合的质性结构。就这方面而言,它的地位依然无可动摇,即使在世纪末了的今天,仍旧是自然科学的中央梁柱。不过进入20世纪的第二时期,物理学的宝座却面临生命科学(life science)的挑战;后者则因50年代后的分子生物学革命而完全改观。

所有科学之中,再没有一门学问,比牛顿物理的世界更坚实、更连贯、更讲求方法。但是普朗克(Max Planck)和爱因斯坦的理论一出,再加以源自19世纪90年代放射线发现的原子理论问世,却使其根基完全动摇。古典物理学的世界是客观的,即在观察工具的限制条件之下(如光学显微镜或望远镜),可以对事物进行适当观察。古典物理学的世界也绝不模棱两可:任何一种物体或现象,不是此就是彼,不是如此便是那般,其间的分野一清二楚。它的定律法则,放之四海而皆准,不论微观世界或大天体,在任何时空下均能同样成立。衔接各个古典物理现象的机体,也明白可辨,可以用“因果”关系的名词表达。在这个基本观念之下,整个古典物理学世界的系统属于一种“决定论”(determinism),而实验室实验的目的,则专在摒除日常生活笼罩的复杂迷障,以展现其确定性的本相。只有傻瓜或小孩子,才会声称鸟群或蝴蝶可以不顾地心引力定律自由飞翔。科学家当然知道世上有这种“不合科学”的说法,可是作为科学中人,这些“胡说八道”不关他们的事情。

但是到了1895—1914年间的时代,古典律的世界却被人提出质疑。光束,到底是一道连续的波动,还是如爱因斯坦依据普朗克所言,乃是一连串间断的光子(photons)放射而成?也许,有时候最好把它看作光波——也许,有时候以光点为宜。可是波粒之间,有没有任何关系?如有,又是何种关联?光之为物,“到底”是啥玩意儿?伟大的爱因斯坦本人,在他提出这道难解谜题的20年后也说:“对光,我们现在有两种理论,两种都不可或缺,可是——有一件事却不能否认——尽管理论物理学家花了20年之久,两种理论之间,却仍旧找不出任何逻辑关系。”(Holton,1970,p.1017.)而原子之内,到底有何乾坤?现在众所周知,原子已经不是最小物质了(因此与其希腊原名的意味相反),既非最小,自然也非不可再分之物,其中更有大千世界,包含着更小更基本的各种物质。有关这方面的第一项假定,是于1911年卢瑟福(Rutherford)在曼彻斯特(Manchester)发现原子核(atomic nucleus)后提出——这项伟大发现,可谓实验式想象力的光荣胜利,并奠定现代核子物理学的根基,更开了最终成为“大科学”的先河——他发现原子核外,尚有电子循轨道环绕,正如一个具体而微小的太阳系样。但是更进一步研究,探索个别原子结构——其中尤以1912—1913年间玻尔的氢结构研究为最著名,玻尔本人对普朗克的“量子说”也有所知——却再度发现实际与理论不合。在他的电子,与他自己所说的“各项观念连贯交融,令人称羡,不愧是电动力学(electrodynamics)的经典理论”(Holton,1970,p.1028)之间,存在着重大冲突。玻尔提出的模型虽然不失有效,具有精彩的解释及推测能力,可是却与古典的物理世界大异其趣。从牛顿的机械观点观之,简直“可笑并违反理性”,而且根本否认原子大千世界的内部真相。因为在实际上,电子是跳跃式而非循序渐进,或在不同的轨道出没。发现它的一刹那,也许在此轨道上;下一瞬间,可能又在彼轨道上。来去之间,到底有何玄机?也非玻尔模式所能解释。

科学本身的肯定性,便随着这个“次原子”层次观察现象的过程本身发生改变,随之动摇:因为我们越想固定次原子级粒子(particle)的动向,它的速度却越发变得快不可捉。电子的“真正”位置到底何在?有人便曾如此形容过这方面的努力:“看到它,就得打昏它。”(Weisskopf,1980,p.37.)这种矛盾,即德国那名年轻优秀的物理学家海森伯格,于1927年归纳出的著名理论:“测不准原理”(uncertainty principle),并以其大名传世。而此定理之名,着重在“不准”本身,的确意义非凡,因为它正表明了“新科学”中人的忧心所在。“旧科学”的十足肯定,已被他们抛在身后,“新科学”的一切却那么不可捉摸。并不是他们本人缺乏肯定,也非他们的结果令人怀疑,相反地,他们的理论推演,看起来再天马行空,再不可思议,最后却一一均为单调无聊的观察实验所证实。从爱因斯坦的广义相对论起(1915年),即为如此——相对论的最早证据,应是由1919年英国一支日食观察队提出,队员们发现某些遥远星光,一如相对论所推测,向太阳折射而去。其实就实际目的而言,粒子物理学与牛顿物理学无异,其规律同样可测——虽然模样性质大异其趣——但是至少在原子一级以上,牛顿与伽利略的学说依然完全有效。令科学家紧张的是,新旧之间,却不知如何配合是好。

到了1924—1927年间,在20世纪前25年里令物理学家大感不安的二元现象,却突然一扫而空,或可说一时靠边站。此中功臣,得归因于数学物理一门的崛起,即在多国同时出现的“量子力学”(quantum mechanics)。原子世界之内的“真相”原不在“波”或“粒”,却在无可分解的“量子状态”(quantum states),能以“波”或“粒”任一种状态表述。因此,硬将其编列为连续或间断的动作,根本毫无意义。因为我们不可能亦步亦趋,紧追着电子的脚步观察。现在不行,将来也永远不能。于是古典物理的所谓位置(position)、速度(velocity)、动量(momentum)等观念,超出某个地步便不能再予应用,即海森伯格“测不准原理”所点明的界限。当然,出了这个界限,自有其他观念可循,可以产生较有把握的结果。即(负极)电子,被限制在原子内部,贴近(正极)原子核之下,所产生的特定“波纹”或震动“模式”(pattern)。在这个有限空间里接连发生的“量子状态”,便形成了频率不同却规则清晰的模式,并一如各个相关能量般,可经由计算取得,正如奥地利的薛定谔(Erwin Schrodinger)于1926年时所示。这些电子模式,具有惊人的预测及解释效力。因此多年以后,当钚(plutonium)首次为洛斯阿拉莫斯(Los Alamos)原子反应堆提炼成功,正式踏上制造第一颗原子弹之途时,虽然所得数量极少,根本无法观察其性质,但是根据钚元素原子本身的电子数,再加上其94个电子绕行核子的震动频率,就凭这两项资料,无须其他,科学家就得以正确估出,钚将是一种褐色金属,每立方厘米的质量约为20克,并有某种电导热导作用及延展性质。至于“量子力学”,也可以解释为什么原子、分子或任何其他由原子出发的更高组合,却能保持稳定;同时也指出,加上何种程度的额外能量,将可改变此等稳定状态。事实上,便曾有人赞叹道:

甚至连生命现象——举凡脱氧核糖核酸的形状,以及各种不同的核苷酸(nucleotides),在室温下皆能抗拒“热运动”(thermal motion)——都是基于这些根本模式存在。甚至连一年一度的春暖花开,也是基于不同核苷模式的稳定性而发生的(Weisskopf,1980,pp.35—38)。

然而这种种对自然现象探索的伟大突破,效果虽丰,却是建立在过去的废墟之上,并刻意回避对新理论的质疑。所有以往被科学理论认定为肯定恰当的古典信条,如今都已作废,新提出的理论虽然匪夷所思,众人却将疑心暂时搁置。这种现象,不只老一代的科学家感到烦恼。以剑桥迪拉克(Paul Dirac)的“反物质”(antimatter)说为例,“反物质”说即是于他发现其公式可以解决某种电子状态之后提出。借用他的公式,可以对带有“低于”虚空空间零能力的电子状态加以解释。于是对日常事物毫无意义可言的“反物质”概念,迅速为物理学家大加采用(Steven Weinberg,1977,pp.23—24)。这个字眼本身,便意味着一种不让任何“既有现实”的成见,阻碍“理论演算”进步的刻意心态:管它“现实”如何,迟早总会赶上理论公式推算的结果。不过,这种观念毕竟不易被接受,甚至连那些早已将伟大卢瑟福的教诲忘在脑后的科学家也不例外。卢瑟福曾经有言,任何物理学说,若不能向酒吧的女招待解释清楚,就不是好理论。

可是即使在“新科学”的开路英雄当中,也有人根本不能接受“旧日肯定”时代的结束,甚至包括新科学的开山始祖,普朗克和爱因斯坦两人在内。爱因斯坦本人,即曾以一句名言,一吐他对“纯粹或然率式的法则”——而非“决定性的因果论”——的怀疑:“神,可不掷骰子”。他并没有大道理可以辩解,可是“心里有一个声音告诉我,量子力学不是真理”(M.Jammer,1966,p.358)。提出量子革命理论的各位大家们,也曾企图左右通吃,以一套包一套的说法,去除当中的矛盾之处:薛定谔便希望他的“波动力学”(wave mechanics),可以澄清电子“跳”轨的现象,将之解释为一种能量变换的“连续”过程。如此,便可面面俱到,保存古典力学对空间、时间及因果关系因素的考虑。开拓新科学的先锋大师,尤以普朗克和爱因斯坦为著,对自己领头走出的这条新路正在犹豫之间,一闻此说,不禁大为释怀。可是一切尽皆徒然。新球赛已开场,旧规则再也不适用了。

物理学者,能否学着与这种永久的矛盾相安呢?玻尔认为,答案是肯定的,而且势在必行。自然万象的宏大完整,受到人类语言特色的限制,不可能只用单一的描述解释它的全部。描叙自然的模型,不可能只有一种,唯一能够抓住现实真相之道,只有从多种角度以不同方式报告之、集中之、互补之,“将其中外在有差异、内在有矛盾的各方面形容描述,以无尽的组合重叠之”(Holton,1970,p.2018)。这便是玻尔“互补论”(complementarity)的基本原理,一种近似于“相对性原理”(relativity)的形而上学观念,原是他由那些与物理学毫不相干的作家的理念得来,并认为此中精神,放之四海而皆准。而玻尔提出“互补论”,并非有意鼓励原子科学家更进一步,却只是一种想要安抚他们的困惑茫然的好意。它的魅力,原在理性之外。因为我们众人,不只是聪明绝顶的科学家们,都知道世间事多繁复,同一种事物,本身便有多种不同方式可以观照;有时候也许不能类比,有时候甚至相互矛盾,但是每一种方法,都应该由事物的整体面去体会。可是,这种种不同之间,到底有何联结相关,我们却茫然不知。一首贝多芬奏鸣曲产生的效应,可以从物理、生理、心理多方面研究考察,也可以纯粹通过静耳倾听吸收。可是这种种不同的理解方式之间,究竟如何关联,却无人知晓。

但是尽管多方脱解,不自在的感觉仍然存在。就一方面来说,我们有新物理在1920年的大合成,提供了解开自然奥秘的钥匙,甚至到20世纪后期,量子革命的基本观念也依然继续应用。但是自从1900—1927年以来,除非我们将计算机技术理论造就的“非线性式研究”(non-linear analysis),也视为离经叛道的激烈新改变,物理学界可说无甚剧烈变动,却只在同样观念架构之下做演进式的跃进而已。但就另一方面而言,其中却有着总体性的不连贯存在。1931年时,这种不协调的现象,终于扩展至另一学科——连数学的确定性也面对重新考虑。一位奥地利数理逻辑学家哥德尔(Kurt Godel)证实,一组原理永远不可能靠它本身成立;若要显示其一致性或无矛盾性,必须用外界另一组陈述才行。于是证明“哥德尔定理”,一个内部无矛盾、自和谐的世界,根本便属匪夷所思的想象了。

这就是“物理学危机”(crisis in physics)——借用英国一位年轻马克思派学人考德韦尔(Christopher Caudwell,1907—1937)大作的书名(这名自学成才的学者,后在西班牙不幸殒命)。这不但是一个“基础的危机”(crisis of the foundations)——正如数学界对1900—1930年间的称谓(参见《帝国的年代》第十章)——也是一般科学家共有的世界观念。事实上,正当物理学家对哲学性问题耸耸肩膀,回头继续埋头钻研他们面前的新领域时,第二阶段的危机却也正大肆闯入。因为到30年代和40年代,显现在科学家眼前的原子结构,一年比一年更复杂。什么正核子负电子的二元原子世界,哪有这么简单。现在原子家族里面,住着一大家“子”,飞禽走兽,万头攒动,日盛一日,冒出各式各样的新成员,其中有些着实奇怪得很。剑桥的查德威克(Sir Edwin Chadwick),于1932年首先发现这一大家“子”新成员中的一名,即不带电的“中子”(neutron)——不过其他“子”,如“无质之子”(massless),及不带电的“中微子”(neutrino)等,在理论上早就推论得之。这些次原子的粒子,如蜉蝣朝露,寿命几乎都很短暂;品目之多,更在第二次世界大战后“大科学”的高能加速器撞击之下,繁生增多。到50年代末期,已经超出百种以上;而其继续加增之势,也看不出有任何停止的可能。自30年代开始,更由于以下发现,情况变得更加复杂,即在那些将核子及各种电子结合一处的各种带电小“子”之外,另外还有两种来路不明的力量,也在原子之家当中发挥作用。一个是所谓的“强作用力”(strong force),负责将中子及带正电的质子(proton)在原子核内结合起来;至于造成某些粒子衰变现象的责任,则得怪罪到其他所谓“弱作用力”(weak force)的头上。

在这一切大变动中,在20世纪科学崛起的颓垣之中,却有一项基本事物,而且在根本上属于美学的假定,未曾受到挑战。事实上,正当“测不准”的乌云,笼罩在其他所有方面时,这项假定却一枝独秀,越发为科学家所不可缺少。他们如诗人济慈一样,都相信“美即真,真即美”——虽然他们对美的取舍标准,跟济慈并不一样。一个“美好”的理论,本质上便是一项对“真理”的推论,其立论一定线条高雅,简洁流畅,其格局必然气势恢宏,纵览全局。它一定既能综合,又能简化,正如历来伟大的科学理论所证明,都是如此。伽利略与牛顿时代产生的科学的革命即已证实,同样一种法则,掌管天,也操纵地。至于化学的革命,也将物质所系的世间的形形色色、万物万貌,简化成92种系统相连的基本元素。而19世纪物理学的胜利果实,也显示在电学、磁学与光学现象三者之间,有其共同根源。可是新一代的科学革命,带来的却非简约,而是复杂。爱因斯坦那不可思议的相对论,将地心引力形容为一时空曲线,的确将某种恼人的二元质性带进自然:“就一方来说,是舞台,即这道弯曲的时空;就另一面而言,则是众演员,也就是电子、中子、电磁场。可是两者之间,却没有任何联系。”(Steven Weinberg,1979,p.43.)在他一生当中最后的40年里,爱因斯坦这位20世纪的牛顿,倾注全部精力,想要找出一个“统一场论”(unified field theory)好将电磁场与引力作用合为一家,可是他却失败了。现在可好,世间忽然又多出了两股显然毫不相干的力量,与电磁场及地心引力也谈不上什么关系。次原子级众粒子的不断繁生,即使再令人感到兴奋,毕竟只能属于一种暂时的、前期的真理。因为不管在细节上多么美好,新时代的原子图,总是比不上旧原子图美观,甚至连20世纪纯讲实际者流——对这种人来说,任何假说,并没有别的判定标准,只要管用就成——有时也会忍不住做做美梦,希望能有一个高雅、美好又全面,可以解释任何事物的“事事通”理论(everything theory)——借用剑桥物理学家霍金(Stephen Hawking)之言。可是这个美梦似乎难以成真,虽然从60年代起,物理学又再度开始认识到这种综合总览的可能性。事实上,到90年代,物理学界普遍相信,他们已经离某种真正的基本层次不远。其层粒子的众多名目,可能可以简化到几种相当简单却一致的子群。

与此同时,种种异类学科如气象学(meteorology)、生态学(ecology)、非核子物理(non-nuclearphysics)、天文学(astronomy)、流体力学(fluid dynamics),以及其他五花八门、形形色色的数学分支,先是在苏联独自兴起,其后不久也出现于西方世界,更有计算机作为分析工具相助。在它们之间那广大界线不明的地域里,一股新的综合之流开始兴起或谓复兴,可是却顶着一个稍带误导意味的头衔——“混沌论”(chaos theory)。这项理论揭示的道理,与其说是在全然决定论的科学程序之下那不可测知的后果,倒不如说自然在其千形百态之中,在其种种大异其趣又显然毫无相干的形貌之内,包含着一种惊人的普遍形状与模式。[11] 混沌理论,为旧有的因果律带来了新意义。它将原有的“因果关系”,与“可预测性”之间的关节打破,因为它的意义,不在事本偶然,却在那遵循着特定起因的最后结果,其实并不能事先预测。这项理论,也加强了另外一项由古生物学家首开风气,并引起历史学家普遍兴趣的新发展。即历史或进化发展的锁链,虽然在事后可以获得充分一贯性的合理解释,可是事情演变的结果,却不能在起始之时预料。因为就算是完全同样的一条路,初期若发生任何变化,无论多么微不足道,在当时看来多么明显地无足轻重,“演化之河,却会岔流到另外一条完全大异其趣的河道上去”(Gould,1989,p.51)。这种情况,对政治、经济和社会造成的后果至为深远。

但是更进一步,新物理学家的世界,还有着完全有悖常理的层次,不过只要这股悖理保留在原子的小世界内,还不致影响人类的日常生活——这是连科学家本人也居住的世界。可是物理学界中,却至少有一项新发现无法与世如此隔绝。即那项非比寻常的宇宙事实:整个宇宙,似乎正以令人眩晕的速度,在不断扩张之中——此事早已为人用相对论预测,并于1929年经美国天文学家哈勃观察证实。这件扩张大事,后于60年代为其他天文数据证实(可是当时却连许多科学家也难以接受,有人甚至赶忙想出另外一说对抗——所谓的天体“稳定论”)。因此,叫人很难不去臆测,到底这项无限高速扩张,将把宇宙(以及我们)带往何处?当初是何时开始?如何开始?宇宙的历史又为何?并由“大爆炸”(Big Bang)从头谈起。于是宇宙天体学开始活跃兴盛,更成为20世纪科学中炙手可热、最容易转为畅销书大卖的题材。而历史在自然科学中的地位(也许只有地质学及其相关副学科依然例外)也因此大为提升——本来一直到此时为止,后者都很傲然地对历史不表兴趣。于是在“硬性”科学与“实验”之间,二者原本天生一对的亲密关系,渐有逐渐削弱之势。所谓实验,本是对自然现象予以复制再现的手段;时至今日,请问科学,如何借实验再现那些在本质上天生就不可能重复的事象?扩张中的宇宙,使得科学家与门外汉同感狼狈。

这个深感困惑的窘状,证实前人所言不虚。早在大灾难时期,即有有心人关心此事,并有明眼人一语道破。他们深信,一个旧的世界已告结束,即使尚未终止,至少已身处末期的大变乱中;可是在另一方面,新世界的轮廓却仍朦胧难辨。对于科学与外在世界两项危机之间,伟大的普朗克斩钉截铁,认为有着不可否认的绝对关系:

我们正处在历史上一个极为独特的时刻。此时此刻,正是危机一词的充分写照。我们精神暨物质文明中的每一支系,似乎都已抵达重大的转折关头。这种面貌,不仅表现在今日公共事务的实际状态之上,同时也存于个人与社会生活一般基本价值观中。打倒偶像的观念,如今也侵入了科学殿堂。时至今日,简直找不出一条科学定律,没有人予以否定。同时,每一种荒唐理论,也几乎都找得到信徒翕然风从(Planck,1933,p.64)。

这是一位成长于19世纪凡事确定气氛之中的德国中产阶级,面对着大萧条与希特勒崛起的时代氛围,感慨万千,说出此言,自是再自然也没有的反应了。

但在事实上,他这股阴郁消沉,却与当时多数科学家的心情恰恰相反。后者的看法与卢瑟福一致,卢瑟福对英国科学促进协会(British Association)表示(1923年):“我们这些人正生活在一个非凡的物理学时代。”(Howarth,1978,p.92.)每一期科学学刊,每一场研究讨论会——因为科学家对于将竞争与合作集于一堂的喜爱之情,比以前更甚——都带来令人兴奋的新消息、大突破。此时的科学界依然很小(至少如核物理及结晶学这一类先锋性质的学科,仍是如此),足以为每一位年轻研究者带来跃登科学明星的机会。科学家,有着一席令人敬羡的崇高地位。英国前半世纪的30名诺贝尔奖得主中,多数来自剑桥;而当年剑桥,事实上“就是”英国科学本身。当时我们在这里读书的学生,心里自然都很清楚:要是自己的数学成绩好,真正想就读的就会是哪一门科系了。

在这种时代气氛之下,说真的,自然科学的前途自然只有一片光明,除了更进一步的凯歌胜利,更上一层楼的发明,还会有什么不同的展望呢?眼前的种种理论,虽有支离零碎之憾,虽有不完美处,虽有即兴拼补之嫌;但是再看看科学的光明未来,这一切毛病都可忍受,因为它们都将只是暂时性的。不过20余岁,就得到那至高无上的科学荣誉——诺贝尔奖——这些年轻得主,有什么必要为未来担忧?[12] 然而,对这一群不断证实“所谓‘进步’,是多么不可靠的真相”的男子来说(偶然亦有女性),面临着大时代的灾难变乱,正对着他们自己也身处其中的危机世界,又怎能置身事外,不为所动?他们不能,也不会置身事外。大灾难的时代,于是成为一个相对比较起来,科学家也不得不受政治感染的少有时代之一。其中原因,不只是因为许多科学人士,由于种族或意识不为当局所容而大规模由欧洲外移,足以证明科学家也不能视个人政治免疫为理所当然。追究起来,30年代的典型英国科学家,通常多是剑桥反战协会(Cambridge Scientists Anti-War Group)的一员(此会为左派),他或她的激进观点,更在其前辈不加修饰的激烈赞同之中获得证实。后者则从皇家学会(Royal Society),一直到诺贝尔奖得主,尽皆赫赫有名之士:结晶学家贝尔纳(Bernal)、遗传学家霍尔丹(Haldane)、化学胚胎学家李约瑟(Joseph Needham)[13] 、物理学家布莱克特(Patrick M.S.Blackett)和迪拉克,以及数学家哈代(G.H.Hardy)。哈代甚至认为,整个20世纪,只有另外两名人物,列宁与爱因斯坦,足以与他的奥地利板球英雄布雷德曼(Don Bradman)并列匹配。至于30年代典型的美国物理学家,到了战后的冷战年代,更有可能因其战前或日后持续的激进观点,而遭遇政治上的困扰。例如原子弹之父奥本海默(Robert Oppenheimer,1904—1967),以及两度荣获诺贝尔奖(其一为和平奖)和一座列宁奖的化学家鲍林(Linus Pauling)。而典型的法国科学家,往往是30年代人民阵线的同情者,在战时更热烈支持地下抵抗运动——要知道多数法国人都不是后者。至于典型由中欧逃出的流亡科学家,不管他们对公共事务多么缺乏兴趣,此时也几乎不可能对法西斯不含敌意。而走不成或留下来在法西斯国度或苏联的科学家们,也无法置身于其政府的政治把戏之外——不管他们本人事实上是否同意当局的立场——不谈别的原因,光是那种公开作态的手势,便令他们无法回避。就像纳粹德国规定向希特勒致敬的举手礼,大物理学家劳厄(Max von Laue,1897—1960)便想尽方法避免:每回离家之前,两手上都拿着一点东西。自然科学与社会或人文科学不同,因此这种泛政治的现象极不寻常。因为自然科学这门学问,对人间事既不需要持有观点,也从不建议任何想法(只有生命科学某些部分例外)——不过它倒经常对“神”,有所意见主张。

然而科学家与政治发生联系,更直接的因素,却因为他们相信一件事(极为有理),那就是外行人根本不明白——包括政治人物在内——若妥当使用,现代科学将赐予人类社会多么惊人的潜能。而世界经济的崩溃,以及希特勒的崛起,似乎更以不同方式证明了这项观点(相反地,苏联官方及其马克思主义意识形态对自然科学的信仰投入,却使当时西方的许多科学家,误以为它才是一个比较适合实现这种潜力的政权)。于是科技专家政治上与激进思想合流,因为此时此刻,唯有政治上的左翼,在它对科学、理性、进步的全面投身之下——它们则被保守派讽刺以“科学至上主义”(scientism)之名[14] ——自然,代表着认识并支持“科学的社会功能”的一方。《科学的社会功能》(<i>The Social Function of Science</i> ),是当时一本极具影响力的宣传性书籍(Bernal,1939),可想而知,其作者正是当时典型的马克思主义物理学家——天才横溢,充满战斗气息。同样典型的事例,还有法国在1936—1939年间的人民阵线政府,专为科学设立了第一个“科学研究次长”职位,由居里夫人之女,也是诺贝尔奖得主的约利埃-居里(Irène Joliot-Curie)出任并成立“国立科学研究中心”(Centre National de la Recherche Scientifique,CNRS),至今仍为提供法国研究资金的主要机构。事实上情况日趋明显,至少对科学家是如此,科学研究不但需要公共资金支助,由国家发动组织的研究更不可少。英国政府的科学单位,于1930年时,一共雇有743名科学人员——人手显然不够——30年后,已经暴增至7000人以上(Bernal,1967,p.931)。

科学政治化的时代,在第二次世界大战时达到巅峰。这也是自法国大革命雅各宾党时期以来,第一场为了军事目的,有系统并集中动员科学家力量的战争。就成效而言,盟国一方的成就,恐怕比德意日三国轴心为高,因为前者始终未打算利用现有的资源及方法速战速决赢得胜利(参见第一章)。就战略而言,核战争其实是反法西斯的产物。如果单纯是一场国与国之间的战争,根本不会打动尖端的核物理学家,劳驾他们亲自出马,呼吁英美政府制造原子弹——他们本身多数即为法西斯暴政下的难民或流亡者。到原子弹制成,科学家却对自己的可怕成就惊恐万状,到了最后一分钟还在挣扎,试图劝阻政客和军人们不要真的使用;事后,并拒绝继续制造氢弹。种种反应,正好证明了“政治”情感的强大力量。事实上第二次世界大战以后掀起的反核运动,虽然在科学界普遍获得很大支持,主要的支持者,却还是与政治脱不了干系的反法西斯时代的科学家们。